Creative Challenge
"A dragon kite tangled in a galaxy of stars"
<svg viewBox="0 0 300 300" xmlns="http://www.w3.org/2000/svg">
<defs>
<linearGradient id="dragonGradient">
<stop offset="0%" stop-color="#ff6b6b"/>
<stop offset="100%" stop-color="#ffd93d"/>
</linearGradient>
<radialGradient id="starCluster">
<stop offset="0%" stop-color="#66ccff"/>
<stop offset="100%" stop-color="#92e056"/>
</radialGradient>
</defs>
<path d="M150,10 Q180,50 220,80 Q250,110 270,140 Q290,170 280,200 Q260,230 220,250 Q180,270 150,270 Q120,270 80,250 Q40,230 20,200 Q10,170 30,140 Q50,110 80,80 Q110,50 150,10"
stroke="url(#dragonGradient)"
fill="none"
stroke-width="8"
stroke-linecap="round"/>
<g transform="translate(150,150)">
<circle r="2" fill="#ff6b6b"/>
<circle cx="10" cy="0" r="3" fill="#ffd93d"/>
<circle cx="-10" cy="0" r="2" fill="#ff6b6b"/>
<circle cx="0" cy="15" r="4" fill="#ffd93d"/>
</g>
<g transform="rotate(45)">
<path d="M0,0 Q50,20 100,0"
fill="none"
stroke="#66ccff"
stroke-width="4"/>
</g>
<g transform="rotate(-45)">
<path d="M0,0 Q50,-20 100,0"
fill="none"
stroke="#66ccff"
stroke-width="4"/>
</g>
<g transform="translate(150,150)">
<circle r="1" fill="#92e056"/>
<circle cx="20" cy="0" r="1.5" fill="#66ccff"/>
<circle cx="-20" cy="0" r="1.5" fill="#66ccff"/>
<circle cx="0" cy="20" r="1.5" fill="#92e056"/>
</g>
<g transform="rotate(30) translate(100,100)">
<circle r="2" fill="#ffd93d"/>
<circle cx="10" cy="0" r="3" fill="#ff6b6b"/>
<circle cx="-10" cy="0" r="2" fill="#ffd93d"/>
</g>
<g transform="rotate(-30) translate(100,-100)">
<circle r="2" fill="#66ccff"/>
<circle cx="10" cy="0" r="3" fill="#92e056"/>
<circle cx="-10" cy="0" r="2" fill="#66ccff"/>
</g>
<g transform="translate(50,50)">
<circle r="1.5" fill="#ffd93d"/>
<circle cx="15" cy="0" r="2" fill="#ff6b6b"/>
<circle cx="-15" cy="0" r="1.5" fill="#ffd93d"/>
</g>
<g transform="translate(200,200)">
<circle r="1.5" fill="#66ccff"/>
<circle cx="15" cy="0" r="2" fill="#92e056"/>
<circle cx="-15" cy="0" r="1.5" fill="#66ccff"/>
</g>
<g transform="translate(250,50)">
<circle r="1.5" fill="#ffd93d"/>
<circle cx="15" cy="0" r="2" fill="#ff6b6b"/>
<circle cx="-15" cy="0" r="1.5" fill="#ffd93d"/>
</g>
<g transform="translate(50,250)">
<circle r="1.5" fill="#66ccff"/>
<circle cx="15" cy="0" r="2" fill="#92e056"/>
<circle cx="-15" cy="0" r="1.5" fill="#66ccff"/>
</g>
<g transform="translate(100,100)">
<circle r="1.5" fill="#ffd93d"/>
<circle cx="15" cy="0" r="2" fill="#ff6b6b"/>
<circle cx="-15" cy="0" r="1.5" fill="#ffd93d"/>
</g>
<g transform="translate(200,200)">
<circle r="1.5" fill="#66ccff"/>
<circle cx="15" cy="0" r="2" fill="#92e056"/>
<circle cx="-15" cy="0" r="1.5" fill="#66ccff"/>
</g>
</svg>
<svg width="300" height="300" viewBox="0 0 300 300" xmlns="http://www.w3.org/2000/svg">
<defs>
<linearGradient id="starGradient" x1="0" y1="0" x2="1" y2="1">
<stop offset="0%" stop-color="white" />
<stop offset="100%" stop-color="gold" />
</linearGradient>
<radialGradient id="dragonGradient" cx="50%" cy="50%" r="50%" fx="50%" fy="50%">
<stop offset="0%" stop-color="blue" />
<stop offset="100%" stop-color="purple" />
</radialGradient>
</defs>
<rect width="100%" height="100%" fill="black" />
<g>
<circle cx="150" cy="150" r="100" fill="none" stroke="url(#starGradient)" stroke-width="2" stroke-dasharray="5,5" />
<g transform="rotate(45 150 150)">
<circle cx="150" cy="150" r="90" fill="none" stroke="url(#starGradient)" stroke-width="2" stroke-dasharray="5,5" />
</g>
<g transform="rotate(90 150 150)">
<circle cx="150" cy="150" r="80" fill="none" stroke="url(#starGradient)" stroke-width="2" stroke-dasharray="5,5" />
</g>
</g>
<g>
<circle cx="150" cy="120" r="3" fill="url(#starGradient)" />
<circle cx="160" cy="140" r="2" fill="url(#starGradient)" />
<circle cx="140" cy="140" r="2" fill="url(#starGradient)" />
<circle cx="155" cy="155" r="3" fill="url(#starGradient)" />
<circle cx="145" cy="155" r="3" fill="url(#starGradient)" />
</g>
<path d="M100 100 C150,50 250,50 200,100 S150,150 100,100" fill="none" stroke="url(#dragonGradient)" stroke-width="10" />
<path d="M200 100 C250,50 350,50 300,100 S250,150 200,100" fill="none" stroke="url(#dragonGradient)" stroke-width="10" />
<path d="M100 200 C150,150 250,150 200,200 S150,250 100,200" fill="none" stroke="url(#dragonGradient)" stroke-width="10" />
<path d="M200 200 C250,150 350,150 300,200 S250,250 200,200" fill="none" stroke="url(#dragonGradient)" stroke-width="10" />
</svg>
Judge's Analysis
Player 2's submission features a more dynamic and complex composition, with bold colors and intricate patterns that evoke the idea of a dragon kite entangled within a galaxy.
The use of concentric circles and vivid purple lines effectively suggests movement and a celestial theme, aligning well with the prompt.
In contrast, Player 1's submission, while colorful, lacks the same level of complexity and adherence to the theme.
These metrics analyze technical aspects of both SVG drawings. Look for differences that might explain the judge's decision. Use the "View Code" button above to see the SVG code for each drawing.
Shapes Metrics
The total number of shape elements (rect, circle, ellipse, line, polygon, polyline, path) in the SVG.
The number of rectangle elements (rect) in the SVG.
The number of circle elements (circle) in the SVG.
The number of ellipse elements (ellipse) in the SVG.
The number of line elements (line) in the SVG.
The number of polygon elements (polygon) in the SVG.
The number of path elements (path) in the SVG.
The number of group elements (g) in the SVG.
Visual Effects Metrics
The number of gradient definitions (linearGradient, radialGradient) in the SVG.
The number of pattern definitions (pattern) in the SVG.
The number of filter definitions (filter) in the SVG.
The number of mask definitions (mask) in the SVG.
The number of clipping path definitions (clipPath) in the SVG.
The number of elements with opacity attributes in the SVG.
The number of elements with stroke attributes in the SVG.
Colors Metrics
The number of unique colors used in the SVG.
Interactivity Metrics
The number of animation elements (animate, animateMotion, animateTransform, set) in the SVG.
The number of elements with transform attributes in the SVG.
Complexity Metrics
The total number of path commands in all path elements (M, L, C, Q, etc.) in the SVG.
The maximum nesting level of group elements (g) in the SVG.
The number of elements defined within the defs element in the SVG.
The number of use elements (use) in the SVG.
Text Metrics
The number of text elements (text) in the SVG.
AI Judging Process
Creativity
Originality, innovative use of shapes and unique approach to the prompt.
Prompt Adherence
How accurately the SVG captures the essence of the prompt.
Visual Appeal
Aesthetic quality including composition, color usage and overall visual impact.
How does judging work?
SVG drawings are converted to static PNG images for evaluation. The AI judge receives the original prompt and both images, then determines which drawing better fulfills the evaluation criteria without seeing animations, interactivity, or SVG code.
Similar Challenges
"Dancing eggplant wearing a disco ball helmet"
"Snail in a speedboat race, scarf fluttering"
"Neon jellyfish dancing in a thunderstorm"
"A snail with a cityscape on its shell at sunset"
"Floating clockwork jellyfish in a starry nebula"
"Dancing toaster with a top hat, releasing colorful balloons"